函数的最大值和最小值怎么算

 我来答
是你找到了我
高粉答主

2019-07-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43万
展开全部

1、利用函数的单调性,首先明确函数的定义域和单调性, 再求最值。

2、如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。

因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。

3、费马定理可以发现局部极值的微分函数,表明它们必须发生在临界点。可以通过使用一阶导数测试,二阶导数测试或高阶导数测试来区分临界点是局部最大值还是局部最小值,给出足够的可区分性。

4、对于分段定义的任何功能,通过分别查找每个零件的最大值(或最小值),然后查看哪一个是最大(或最小),找到最大值(或最小值)。

扩展资料:

求最大值最小值的例子:

(1)函数x^2在x = 0时具有唯一的全局最小值。

(2)函数x^3没有全局最小值或最大值。虽然x = 0时的一阶导数3x^2为0,但这是一个拐点

(3)函数x^-x在x = 1 / e处的正实数具有唯一的全局最大值。

(4)函数x^3/3-x具有一阶导数x^2-1和二阶导数2x,将一阶导数设置为0并求解x给出在-1和+1的平稳点。从二阶导数的符号,我们可以看到-1是局部最大值,+1是局部最小值。请注意,此函数没有全局最大值或最小值。

蓝蓝蓝1234456
高粉答主

2018-10-11 · 每个回答都超有意思的
知道小有建树答主
回答量:1257
采纳率:100%
帮助的人:30.9万
展开全部

常见的求最值方法有:

1、配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.

2、判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.

3、利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.

4、利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.

5、换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值. 还有三角换元法, 参数换元法.

6、数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值. 求利用直线的斜率公式求形如的最值.

7、利用导数求函数最值2.首先要求定义域关于原点对称然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。

如:函数f(x)=x^3,定义域为R,关于原点对称;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函数.又如:函数f(x)=x^2,定义域为R,关于原点对称;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函数.

扩展资料:

一般的,函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。

函数最大(小)值的几何意义——函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。

最小值

设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。

最大值

设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≤M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最大值。 

一次函数

一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

所以,无论是正比例函数,即:y=ax(a≠0) 。还是普通的一次函数,即:y=kx+b (k为任意不为0的常数,b为任意实数),只要x有范围,即z<或≤x<≤m(要有意义),那么该一次函数就有最大或者最小或者最大最小都有的值。而且与a的取值范围有关系

当a<0时

当a<0时,则y随x的增大而减小,即y与x成反比。则当x取值为最大时,y最小,当x最小时,y最大。例:

2≤x≤3 则当x=3时,y最小,x=2时,y最大

当a>0时

当a>0时,则y随x的增大而增大,即y与x成正比。则当x取值为最大时,y最大,当x最小时,y最小。例:

2≤x≤3 则当x=3时,y最大,x=2时,y最小 [3] 

二次函数

一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。  

注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),

但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。

而二次函数的最值,也和一次函数一样,与a扯上了关系。

当a<0时,则图像开口于y=2x&sup2; y=&frac12;x&sup2;一样,则此时y 有最大值,且y只有最大值(联系图像和二次函数即可得出结论)

此时y值等于顶点坐标的y值

当a>0时,则图像开口于y=-2x&sup2; y=-&frac12;x&sup2;一样,则此时y 有最小值,且y只有最小值(联系图像和二次函数即可得出结论)

此时y值等于顶点坐标的y值

参考资料:百度百科-函数最值

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云南万通汽车学校
2017-05-23 · 国家定点培训基地,专注培养汽车人才。
云南万通汽车学校
云南万通汽修学校落于美丽的春城昆明,学校坏境优美,学习氛围浓厚。教学设施设备齐全,建有新能源汽车实训厅、整车实训厅、电器实训厅、汽车美容实训厅等20余个实训大厅,开设三十多个汽车技术专业。
向TA提问
展开全部

一. 求函数最值常用的方法
最值问题是生产,科学研究和日常生活中常遇到的一类特殊的数学问题,是高中数学的一个重点,
它涉及到高中数学知识的各个方面, 解决这类问题往往需要综合运用各种技能, 灵活选择合理的解题途径, 而教材中没有作出系统的叙述.因此,
在数学总复习中,通过对例题, 习题的分析, 归纳出求最值问题所必须掌握的基本知识和基本处理方程.
常见的求最值方法有:

  1. 配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.

  2. 判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.

  3. 利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.

  4. 利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.

  5. 换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.
    还有三角换元法, 参数换元法.

  6. 数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.
    求利用直线的斜率公式求形如的最值.

  7. 利用导数求函数最值
    2.首先要求定义域关于原点对称
    然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数.
    如:函数f(x)=x^3,定义域为R,关于原点对称;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函数.
    又如:函数f(x)=x^2,定义域为R,关于原点对称;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函数.

本回答被网友采纳

免费领入学礼包 有礼

现在入学礼包等你来领

  • 官方电话
  • 在线客服
  • 官方服务
    • 官方网站
    • 就业保障
    • 热门专业
    • 入学指南
    • 在线课堂
    • 领取礼包
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
9642牛奶
2019-12-23 · TA获得超过158个赞
知道答主
回答量:1220
采纳率:3%
帮助的人:80.5万
展开全部
1.配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.

2.判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.

3.利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.

4.利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.

5.换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.

6.数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.

扩展资料:

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

设f是一个从实数集的子集射到 的函数:f在中的某个点c处是连续的当且仅当以下的两个条件满足:

f在点c上有定义。c是其中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。

不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。

仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:

对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的δ,只要x满足c - δ< x < c + δ,就有成立。

参考资料:百度百科——函数
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
中公教育
2017-05-23 · 国内知名职业教育培训机构
中公教育
中公教育是大型的多品类职业教育机构。在全国拥有1859个直营网点,覆盖319个地级市。主营业务横跨招录考试培训、学历提升和职业能力培训3大板块,提供超过100个品类的综合职业就业培训服务。
向TA提问
展开全部
给你个式子

如:y=(x-a)²+c

因为(x-a)²≥0

当x=a时 上式最小值为,ymin=c

将上式改造

如 y=-(x-a)²+c

当x=a时,上式最大值为:ymax=c

看出方法了吗。

求函数值域及最值的常用方法有:配方法、换元法、反函数法、中药不等式法、单调性法、判别式法、数形结合法、分离常数法、参数法、导数法等等。

函数y=x+√(x²-3x+2)的值域为____

解:由y=x+√(x²-3x+2),得

√(x²-3x+2)=y-x≥0.

两边平方,得(2y-3)x=y²-2,

从而,y≠3/2,且x=(y²-2)/(2y-3).

由y-x=y-(y²-2)/(2y-3)≥0,得

(y²-3y+2)/(2y-3)≥0,

解得3/2>y≥1 或 y≥2.

当y≥2时...
  • 官方电话
  • 官方服务
    • 官方网站
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式