图像的最边缘部分怎么进行平均过程 opencv
1个回答
2017-06-23 · 知道合伙人教育行家
关注
展开全部
在opencv中显示边缘检测很简单,只需调用一个cvCanny函数,其使用的是Canny算法来实现对图像的边缘检测.
函数原型为:
void cvCanny( const CvArr* image,CvArr* edges,double threshold1,double threshold2, int aperture_size=3 );
第一个参数为待检测的图像,注意一点,其必须是灰度图.
第二个参数为输出的边缘图,其也是一个灰度图.
后三个参数与Canny算法直接相关,threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割,aperture_size算子内核大小,可以去看看Canny算法.
从彩色图到灰度图需要使用到cvCvtColor函数,其接受三个参数,第一为输入,第二为输出,第三个为转换的标识,我们这边是RGB到GRAY,使用的是CV_RGB2GRAY.
参考demo代码如下:
#include <iostream>
#include <string>
#include <sstream>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace std;
int String2int(const string& str_)
{
int _nre = 0;
stringstream _ss;
_ss << str_;
_ss >> _nre;
return _nre;
}
void DoCanny(const string& strFileName_)
{
//原彩色图片
IplImage* _pIplImageIn = cvLoadImage(strFileName_.data());
if (_pIplImageIn == NULL)
{
return;
}
//彩色图片转换成灰度图放置的图片
IplImage* _pIplImageCanny = cvCreateImage(cvGetSize(_pIplImageIn), _pIplImageIn->depth, 1);
cvCvtColor(_pIplImageIn, _pIplImageCanny, CV_RGB2GRAY);//CV_RGB2GRAY将rgb图转成灰度图
//只有边缘路径的图片
IplImage* _pIplImageOut = cvCreateImage(cvGetSize(_pIplImageIn), IPL_DEPTH_8U, 1);
//边缘检测只能作用于灰度图
if (_pIplImageCanny->nChannels != 1)
{
return;
}
//边缘检测操作
cvCanny(_pIplImageCanny, _pIplImageOut, 1, 110, 3);
cvNamedWindow("Src");
cvShowImage("Src", _pIplImageIn);
cvNamedWindow("Canny");
cvShowImage("Canny", _pIplImageOut);
cvWaitKey(0);
cvReleaseImage(&_pIplImageIn);
cvReleaseImage(&_pIplImageCanny);
cvReleaseImage(&_pIplImageOut);
cvDestroyWindow("Src");
cvDestroyWindow("Canny");
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
cout << "You should give the filename of picture!" << endl;
return -1;
}
DoCanny(argv[1]);
return 0;
}
函数原型为:
void cvCanny( const CvArr* image,CvArr* edges,double threshold1,double threshold2, int aperture_size=3 );
第一个参数为待检测的图像,注意一点,其必须是灰度图.
第二个参数为输出的边缘图,其也是一个灰度图.
后三个参数与Canny算法直接相关,threshold1和threshold2 当中的小阈值用来控制边缘连接,大的阈值用来控制强边缘的初始分割,aperture_size算子内核大小,可以去看看Canny算法.
从彩色图到灰度图需要使用到cvCvtColor函数,其接受三个参数,第一为输入,第二为输出,第三个为转换的标识,我们这边是RGB到GRAY,使用的是CV_RGB2GRAY.
参考demo代码如下:
#include <iostream>
#include <string>
#include <sstream>
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace std;
int String2int(const string& str_)
{
int _nre = 0;
stringstream _ss;
_ss << str_;
_ss >> _nre;
return _nre;
}
void DoCanny(const string& strFileName_)
{
//原彩色图片
IplImage* _pIplImageIn = cvLoadImage(strFileName_.data());
if (_pIplImageIn == NULL)
{
return;
}
//彩色图片转换成灰度图放置的图片
IplImage* _pIplImageCanny = cvCreateImage(cvGetSize(_pIplImageIn), _pIplImageIn->depth, 1);
cvCvtColor(_pIplImageIn, _pIplImageCanny, CV_RGB2GRAY);//CV_RGB2GRAY将rgb图转成灰度图
//只有边缘路径的图片
IplImage* _pIplImageOut = cvCreateImage(cvGetSize(_pIplImageIn), IPL_DEPTH_8U, 1);
//边缘检测只能作用于灰度图
if (_pIplImageCanny->nChannels != 1)
{
return;
}
//边缘检测操作
cvCanny(_pIplImageCanny, _pIplImageOut, 1, 110, 3);
cvNamedWindow("Src");
cvShowImage("Src", _pIplImageIn);
cvNamedWindow("Canny");
cvShowImage("Canny", _pIplImageOut);
cvWaitKey(0);
cvReleaseImage(&_pIplImageIn);
cvReleaseImage(&_pIplImageCanny);
cvReleaseImage(&_pIplImageOut);
cvDestroyWindow("Src");
cvDestroyWindow("Canny");
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
cout << "You should give the filename of picture!" << endl;
return -1;
}
DoCanny(argv[1]);
return 0;
}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询