怎样证明一组向量线性相关或者线性无关

 我来答
教育小百科达人
2019-11-09 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:476万
展开全部

把向量组的各列向量拼成一个矩阵,求出矩阵的秩。若秩小于向量个数,则向量组线性相关;若秩等于向量个数,则向量组线性无关。

例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。

扩展资料:

若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。

一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。

参考资料来源:百度百科--线性相关

LH科教小百科
高能答主

2021-06-14 · 专注于分享科学教育知识
LH科教小百科
采纳数:1169 获赞数:90819

向TA提问 私信TA
展开全部

证明矩阵向量组线性无关,就是把这些向量组成一个矩阵,然后用初等行变换将之变成只含1和0的矩阵;然后观察每列的元素,如果某一列能够被其他列线性计算表示,则说明是线性相关,反之线性无关。

证明举例:A=【1 0 0】T和B=【0 1 0】T和C=【0 0 1】T,他们之间是没办法用A = b*B+c*C来表示的,或者找不到b和c,使得A = b*B+c*C成立,此时说明A和B C线性无关。反之,如果能找到b和c,使得A = b*B+c*C成立,那么A和B C线性无关。

线性相关性质

1、对于任一向量组而言,不是线性无关的就是线性相关的。

2、向量组只包含一个向量a时,a为0向量,则说A线性相关;若a≠0,则说A线性无关。

3、包含零向量的任何向量组是线性相关的。

4、含有相同向量的向量组必线性相关。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友093d915
高粉答主

2021-06-17 · 说的都是干货,快来关注
知道小有建树答主
回答量:1041
采纳率:100%
帮助的人:48.7万
展开全部

证明矩阵向量组线性无关,就是把这些向量组成一个矩阵,然后用初等行变换将之变成只含1和0的矩阵;然后观察每列的元素,如果某一列能够被其他列线性计算表示,则说明是线性相关,反之线性无关。

证明举例:A=【1 0 0】T和B=【0 1 0】T和C=【0 0 1】T,他们之间是没办法用A = b*B+c*C来表示的,或者找不到b和c,使得A = b*B+c*C成立,此时说明A和B C线性无关。反之,如果能找到b和c,使得A = b*B+c*C成立,那么A和B C线性无关。



线性相关注意事项:

1、对于任一向量组而言,不是线性无关的就是线性相关的。

2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。

3、包含零向量的任何向量组是线性相关的。

4、含有相同向量的向量组必线性相关。

5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】

6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】

7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】

8、一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。【相关组的缩短组仍相关】

9、若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友9b89e35
2017-09-25 · TA获得超过1002个赞
知道小有建树答主
回答量:309
采纳率:88%
帮助的人:90.3万
展开全部
最直观的方法,就是把这些向量组成一个矩阵,
然后用初等行变换将之变成只含1和0的矩阵;
然后观察每列的元素,如果某一列能够被其他列线性计算表示,则说明是线性相关,反之线性无关。
例如:
A=[1 0 0]T 和B= [010]T 和C= [001]T, 他们之间是没办法 用 A = b*B+c*C 来表示的,或者找不到b和c,使得 A = b*B+c*C成立, 此时说明A和B C线性无关。 反之,如果能找到b和c,使得 A = b*B+c*C成立,那么A和B C线性无关
追答
最后2个字笔误,是“相关”
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
美食八方汇
高粉答主

2020-10-23 · 说的都是干货,快来关注
知道答主
回答量:9.9万
采纳率:3%
帮助的人:4878万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式