双曲线的题目怎么做
展开全部
双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹.双曲线是圆锥曲线的一种,即圆锥面与平面的交截线.双曲线在一定的仿射变换下,也可以看成反比例函数.
定义:我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a)的轨迹称为双曲线.
定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线.定点叫双曲线的焦点
定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线.定点叫双曲线的焦点,定直线叫双曲线的准线
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线.
定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线.
1.a、b、c不都是零.
2.b^2 - 4ac > 0.
3.a^2+b^2=c^2
在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形.这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1.
上述的四个定义是等价的,并且根据建好的前后位置判断图像关于x,y轴对称.
编辑本段双曲线的标准方程 1,焦点在X轴上时为:
x^2/a^2 - y^2/b^2 = 1
2,焦点在Y 轴上时为:
y^2/a^2 - x^2/b^2 = 1
定义:我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a)的轨迹称为双曲线.
定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线.定点叫双曲线的焦点
定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线.定点叫双曲线的焦点,定直线叫双曲线的准线
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线.
定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线.
1.a、b、c不都是零.
2.b^2 - 4ac > 0.
3.a^2+b^2=c^2
在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形.这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1.
上述的四个定义是等价的,并且根据建好的前后位置判断图像关于x,y轴对称.
编辑本段双曲线的标准方程 1,焦点在X轴上时为:
x^2/a^2 - y^2/b^2 = 1
2,焦点在Y 轴上时为:
y^2/a^2 - x^2/b^2 = 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询