5个回答
2018-09-09
展开全部
x趋于π/2时,极限为正无穷大,所以,x= π/2是一条水平渐进线。
x趋于—π/2时,极限为负无穷大,所以,x=— π/2也是一条水平渐进线。
共2条
x趋于—π/2时,极限为负无穷大,所以,x=— π/2也是一条水平渐进线。
共2条
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设 y = xarctanx 的渐近线是 y = kx + b
则 k1 = lim<x→+∞>y/x = lim<x→+∞>arctanx = π/2,
b1 = lim<x→+∞>(y-k1x) = lim<x→+∞>x(arctanx-π/2)
= lim<x→+∞>(arctanx-π/2)/(1/x) (0/0)
= lim<x→+∞>[1/(1+x^2)]/(-1/x^2) = lim<x→+∞>[-x^2/(1+x^2)] = -1,
一条渐近线是 y = (π/2)x - 1 ;
k2 = lim<x→-∞>y/x = lim<x→-∞>arctanx = -π/2,
b2 = lim<x→-∞>(y-k1x) = lim<x→-∞>x(arctanx-π/2)
= lim<x→-∞>(arctanx-π/2)/(1/x) (0/0)
= lim<x→-∞>[1/(1+x^2)]/(-1/x^2) = lim<x→-∞>[-x^2/(1+x^2)] = -1;
另一条渐近线是 y = -(π/2)x - 1
则 k1 = lim<x→+∞>y/x = lim<x→+∞>arctanx = π/2,
b1 = lim<x→+∞>(y-k1x) = lim<x→+∞>x(arctanx-π/2)
= lim<x→+∞>(arctanx-π/2)/(1/x) (0/0)
= lim<x→+∞>[1/(1+x^2)]/(-1/x^2) = lim<x→+∞>[-x^2/(1+x^2)] = -1,
一条渐近线是 y = (π/2)x - 1 ;
k2 = lim<x→-∞>y/x = lim<x→-∞>arctanx = -π/2,
b2 = lim<x→-∞>(y-k1x) = lim<x→-∞>x(arctanx-π/2)
= lim<x→-∞>(arctanx-π/2)/(1/x) (0/0)
= lim<x→-∞>[1/(1+x^2)]/(-1/x^2) = lim<x→-∞>[-x^2/(1+x^2)] = -1;
另一条渐近线是 y = -(π/2)x - 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询