2个回答
展开全部
具体回答如图:
一个函数,可以存在不定积分,腊知带而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
一轮芦个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
扩展资料:
把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
某物体在变力F=F(x)的作用下,在位移区间[a,b]上做的功等于F=F(x)在[a,b]上的定积分。
参考资料来源:百度百科——猛汪定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询