数学题目,请你们帮帮忙!!谢谢你们!!超级谢谢!!!
4个回答
展开全部
(1). 求函数 y=(x²+3x+3)/(x+1)在x>-1时的最小值;
解:x>-1时x+1>0,故有:
y=(x²+3x+3)/(x+1)=[(x²+x)+2(x+1)+1]/(x+1)
=x+2+1/(x+1)=(x+1)+1/(x+1)+1≧2+1=3;即ymin=3;
此时x+1=1/(x+1),即(x+1)²=1,x+1=1,即x=0;
(2). 已知正数 x,y满足 x+y=5,求1/(x+1)+1/(y+2)的最小值;
解:由x+y=5,得y=5-x;故u=1/(x+1)+1/(y+2)=1/(x+1)+1/(7-x)=1/(x+1)-1/(x-7)
=-8/(x+1)(x-7)=-8/(x²-6x-7)=-8/[(x-3)²-16]=8/[-(x-3)²+16];
分母 -(x-3)²+16在x=3时获得最大值16; 那么此时u获得最小值 8/16=1/2;
即 x=3,y=2时 [1/(x+1)+1/(y+2)]min=1/4+1/4=1/2;
解:x>-1时x+1>0,故有:
y=(x²+3x+3)/(x+1)=[(x²+x)+2(x+1)+1]/(x+1)
=x+2+1/(x+1)=(x+1)+1/(x+1)+1≧2+1=3;即ymin=3;
此时x+1=1/(x+1),即(x+1)²=1,x+1=1,即x=0;
(2). 已知正数 x,y满足 x+y=5,求1/(x+1)+1/(y+2)的最小值;
解:由x+y=5,得y=5-x;故u=1/(x+1)+1/(y+2)=1/(x+1)+1/(7-x)=1/(x+1)-1/(x-7)
=-8/(x+1)(x-7)=-8/(x²-6x-7)=-8/[(x-3)²-16]=8/[-(x-3)²+16];
分母 -(x-3)²+16在x=3时获得最大值16; 那么此时u获得最小值 8/16=1/2;
即 x=3,y=2时 [1/(x+1)+1/(y+2)]min=1/4+1/4=1/2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询