展开全部
(1) 将 x^2 = 2py 代入 x^2+y^2 = 28, 得 y^2+2py-28 = 0 ,
得正根 y = [√(4p^2+4×28)-2p]/2 = √(p^2+28)-p,
x = ±√{2p[√(p^2+28)-p]}, |AB| = 2√{2p[√(p^2+28)-p]} = 4√6,
√{2p[√(p^2+28)-p]} = 2√6 = √24, 2p[√(p^2+28)-p] = 24,
√(p^2+28) = p+12/p, p^2+28 = p^2 + 24 + 144/p^2,
4 = 144/p^2, p^2 = 144/4 = 36, p = 6, 抛物线 C: x^2 = 12y.
(2) 抛物线C:y = x^2/12 , 设 C 上 Q(6a, 3a^2) ;
抛物线准线 L: y = -3, 设 P(p,-3);
y' = x/6, 在点 Q 处切线斜率是a, 切线 L' 方程 y = a(x-6a),
与 y 轴交于 M(0, -6a^2), 则 -6a^2 = t. 记点 R(q, r),
因 向量 PR - PQ= PM, 即 (q-p, r+3) - (6a-p, 3a^2+3) = (p, -3+6a^2)
则 (q-6a, r-3a^2) = (p, -3+6a^2)
得 q-6a = p, r-3a^2 = -3+6a^2
r = -3+9a^2 = -3 - 3t/2
得正根 y = [√(4p^2+4×28)-2p]/2 = √(p^2+28)-p,
x = ±√{2p[√(p^2+28)-p]}, |AB| = 2√{2p[√(p^2+28)-p]} = 4√6,
√{2p[√(p^2+28)-p]} = 2√6 = √24, 2p[√(p^2+28)-p] = 24,
√(p^2+28) = p+12/p, p^2+28 = p^2 + 24 + 144/p^2,
4 = 144/p^2, p^2 = 144/4 = 36, p = 6, 抛物线 C: x^2 = 12y.
(2) 抛物线C:y = x^2/12 , 设 C 上 Q(6a, 3a^2) ;
抛物线准线 L: y = -3, 设 P(p,-3);
y' = x/6, 在点 Q 处切线斜率是a, 切线 L' 方程 y = a(x-6a),
与 y 轴交于 M(0, -6a^2), 则 -6a^2 = t. 记点 R(q, r),
因 向量 PR - PQ= PM, 即 (q-p, r+3) - (6a-p, 3a^2+3) = (p, -3+6a^2)
则 (q-6a, r-3a^2) = (p, -3+6a^2)
得 q-6a = p, r-3a^2 = -3+6a^2
r = -3+9a^2 = -3 - 3t/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询