这道高数求不定积分的题怎么做
4个回答
展开全部
使用分部积分法
=0.5arcsinxd(x^2)
=0.5*x^2arcsinx-0.5x^2d(arcsinx)
答案:1/2*x^2*asin(x)+1/4*x*(1-x^2)^(1/2)-1/4*asin(x)
=0.5arcsinxd(x^2)
=0.5*x^2arcsinx-0.5x^2d(arcsinx)
答案:1/2*x^2*asin(x)+1/4*x*(1-x^2)^(1/2)-1/4*asin(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:原式=1/2∫arcsinxdx^2
=1/2(x^2arcsinx-∫x^2darcsinx)
=1/2(x^2arcsinx-∫(x^2/√1-x^2)dx)
设x=cost(0<t<π)
则∫(x^2/√ 1-x^2)dx
=∫[cos^2(t)/sint]dcost
=-∫cos^2(t)dt
=-1/2∫(1+cos2t)dt
=-1/2(∫dt+1/2∫cos2td2t)
=-1/2(t+1/2sin2t)+C
所以原式=1/2(x^2arcsinx)+1/4arccosx+
+1/4(x√1-x^2)+C
=1/2(x^2arcsinx-∫x^2darcsinx)
=1/2(x^2arcsinx-∫(x^2/√1-x^2)dx)
设x=cost(0<t<π)
则∫(x^2/√ 1-x^2)dx
=∫[cos^2(t)/sint]dcost
=-∫cos^2(t)dt
=-1/2∫(1+cos2t)dt
=-1/2(∫dt+1/2∫cos2td2t)
=-1/2(t+1/2sin2t)+C
所以原式=1/2(x^2arcsinx)+1/4arccosx+
+1/4(x√1-x^2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询