不定积分怎么求

第三个和第四个... 第三个和第四个 展开
 我来答
shawhom
高粉答主

2019-01-03 · 喜欢数学,玩点控制,就这点爱好!
shawhom
采纳数:11705 获赞数:28003

向TA提问 私信TA
展开全部
∫[sinx/(1+sinx)]dx
=∫[(1+sinx-1)/(1+sinx)]dx
=∫dx-∫[1/(1+sinx)]dx
=x-∫{(1-sinx)/[1-(sinx)^2]}dx
=x-∫[1/(cosx)^2]dx+∫[sinx/(cosx)^2]dx
=x-tanx-∫[1/(cosx)^2]d(cosx)
=x-tanx+1/cosx+C
∫xarctan²x dx
=(1/2)∫arctan²x d(x²)
=(1/2)x²arctan²x - ∫x²arctanx/(1+x²) dx
=(1/2)x²arctan²x - ∫(x²+1-1)arctanx/(1+x²) dx
=(1/2)x²arctan²x - ∫arctanx dx + ∫arctanx/(1+x²) dx
中间那个积分用分部积分,第三个积分直接凑微分
=(1/2)x²arctan²x - xarctanx + ∫ x/(1+x²) dx + ∫arctanx d(arctanx)
=(1/2)x²arctan²x - xarctanx + (1/2)∫ 1/(1+x²) d(x²) + (1/2)arctan²x
=(1/2)x²arctan²x - xarctanx + (1/2)ln(1+x²) + (1/2)arctan²x +C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2019-01-03 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8098万
展开全部
(3) 令 tan(x/2) = u, 则 sinx = 2u/(1+u^2), dx = 2du/(1+u^2)
I = ∫[4udu/(1+u^2)^2]/[1+2u/(1+u^2)]
= ∫4udu/[(1+u)^2 (1+u^2)] = 2∫[1/(1+u^2)-1/(1+u)^2]du
= 2arctanu + 2/(1+u) + C = 2arctan[tan(x/2)] + 2/[1+tan(x/2)] + C
(4) I = ∫x(arctanx)^2dx = (1/2)∫(arctanx)^2dx^2
= (1/2)(xarctanx)^2 - ∫x^2(arctanx)dx/(1+x^2)
= (1/2)(xarctanx)^2 - ∫arctanxdx + ∫(arctanx)dx/(1+x^2)
= (1/2)(xarctanx)^2 - xarctanx +∫[x/(1+x^2)]dx + ∫(arctanx)darctanx
= (1/2)(xarctanx)^2 - xarctanx +(1/2)ln(1+x^2) + (1/2)(arctanx)^2 + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式