重积分的计算
展开全部
利用极坐标计算二重积分,有公式 ∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的。 I=∫dx∫(x^2+y^2)^-1/2 dy x的积分上限是1,下限0 y的积分上限是x,下限是x2 积分区域D即为直线y=x,和直线y=x2在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围:因为y=x2的极坐标方程为:rsinθ=r2cos2θ r=sinθ/cos2θ 因为直线y=kx和曲线y=x2的交点为(0,0),(k,k2),所以在极坐标中r的取值范围为[0,sinθ/cos2θ],则积分I化为极坐标的积分为 I=∫dθ∫1/√(rcosθ)2+(rsinθ)2rdr =∫dθ∫dr (θ范围[0,π/4],r范围[0,sinθ/cos2θ]) =∫(sinθ/cos2θ)dθ(θ范围[0,π/4]) =∫(-1/cos2θ)dcosθ =|1/cosθ|(θ范围[0,π/4]) =1/cos(π/4)-1/cos0 =√2-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询