6个回答
展开全部
令t=x-1
原式=lim(t->0) [(t+1)/t-1/ln(1+t)]
=lim(t->0) [1+1/t-1/ln(1+t)]
=1+lim(t->0) [ln(1+t)-t]/tln(1+t)
=1+lim(t->0) [t-(t^2)/2+o(t^2)-t]/(t^2)
=1+lim(t->0) [o(t^2)/(t^2)-1/2]
=1-1/2
=1/2
原式=lim(t->0) [(t+1)/t-1/ln(1+t)]
=lim(t->0) [1+1/t-1/ln(1+t)]
=1+lim(t->0) [ln(1+t)-t]/tln(1+t)
=1+lim(t->0) [t-(t^2)/2+o(t^2)-t]/(t^2)
=1+lim(t->0) [o(t^2)/(t^2)-1/2]
=1-1/2
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x->1) [ x/(x-1) -1/lnx]
=lim(x->1) [xlnx -(x-1) ]/[(x-1).lnx]
=lim(x->1) [xln(1+(x-1)) -(x-1) ]/[(x-1).ln(1+ (x-1))]
=lim(x->1) [x(x-1) -(x-1) ]/(x-1)^2
=lim(x->1) (x-1)^2/ (x-1)^2
=1
=lim(x->1) [xlnx -(x-1) ]/[(x-1).lnx]
=lim(x->1) [xln(1+(x-1)) -(x-1) ]/[(x-1).ln(1+ (x-1))]
=lim(x->1) [x(x-1) -(x-1) ]/(x-1)^2
=lim(x->1) (x-1)^2/ (x-1)^2
=1
追问
第二步是怎么变到第三步的
追答
等价无穷小
x->1 , x-1 ->0
lnx = ln(1 +(x-1)) ~ x-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询