(sinx-arcsinx)/x^3求x->0时的极限

 我来答
轮看殊O
高粉答主

2021-10-27 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:1009万
展开全部

(x-arcsinx)/(sinx) ^3 当x趋近于0时的极限求法如下:

从几何意义上看,“当n>N时,均有不等式|xn-a|<ε成立”意味着:所有下标大于N的xn都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某 ε0>0,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

长门有猫饼
2021-03-26
知道答主
回答量:1
采纳率:0%
帮助的人:607
展开全部

1.最简单的方法是麦克劳林替换,但需要背公式。

2.最主流的方法是等价无穷小替换。

3.最不推荐一直洛必达法则,计算量过大费时间。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2020-03-16 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30676 获赞数:146426
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
用等价无穷小替换:
sinx ≈ x - x³/6,
arcsinx ≈ x+x³/6,
代入化简得极限= - 1/3。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式