4个回答
展开全部
需要分情况,若n阶方阵a可以表示为n个初等矩阵的乘积,则a可逆矩阵。
矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
扩展资料:
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
展开全部
i=p1...psaq1...qt两端同时左乘ps^-1...p1^-1同时又乘qt^-1...q1^-1得
ps^-1...p1^-1iqt^-1...q1^-1=ps^-1...p1^-1p1...psaq1...qtqt^-1...q1^-1=a
注意逆矩阵与矩阵的乘积为单位矩阵
ps^-1...p1^-1iqt^-1...q1^-1=ps^-1...p1^-1p1...psaq1...qtqt^-1...q1^-1=a
注意逆矩阵与矩阵的乘积为单位矩阵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询