求下列不定式极限:
展开全部
(1)
lim(x->0) [ 1/(1-cosx) - 2(cotx)^2 ]
=lim(x->0) [ 1/(1-cosx) - 2(cosx)^2/(sinx)^2 ]
=lim(x->0) [ (sinx)^2 - 2(1-cosx)(cosx)^2 ]/[(1-cosx)(sinx)^2 ]
=lim(x->0) [ (sinx)^2 - 2(1-cosx)(cosx)^2 ]/[ (1/2)x^4 ]
=lim(x->0) [ (sinx)^2 - 2(cosx)^2 + 2(cosx)^3 ]/[ (1/2)x^4 ]
=lim(x->0) [ 1 - 3(cosx)^2 + 2(cosx)^3 ]/[ (1/2)x^4 ]
(0/0 分子分母分别求导)
=lim(x->0) [ 6cosx.sinx - 6(cosx)^2. sinx ]/( 2x^3 )
=lim(x->0) (3sin2x - 3sin2x.cosx)/( 2x^3 )
=[lim(x->0) 3sin2x/x ] . lim(x->0) (1 - cosx)/( 2x^2 )
=6lim(x->0) (1 - cosx)/( 2x^2 )
=6lim(x->0) (1/2)x^2/( 2x^2 )
=6/4
=3/2
(2)
x->0
ln(1+x) = x -(1/2)x^2 +o(x^2)
e^x = 1+ x+(1/2)x^2 +o(x^2)
ln(1+x) -e^x +1 = -x^2 +o(x^2)
lim(x->0) [ 1/(e^x-1) - 1/ln(1+x) ]
=lim(x->0) [ln(1+x) - e^x +1 ]/[(e^x-1).ln(1+x) ]
=lim(x->0) [ln(1+x) - e^x +1 ]/x^2
=lim(x->0) -x^2/x^2
=-1
lim(x->0) [ 1/(1-cosx) - 2(cotx)^2 ]
=lim(x->0) [ 1/(1-cosx) - 2(cosx)^2/(sinx)^2 ]
=lim(x->0) [ (sinx)^2 - 2(1-cosx)(cosx)^2 ]/[(1-cosx)(sinx)^2 ]
=lim(x->0) [ (sinx)^2 - 2(1-cosx)(cosx)^2 ]/[ (1/2)x^4 ]
=lim(x->0) [ (sinx)^2 - 2(cosx)^2 + 2(cosx)^3 ]/[ (1/2)x^4 ]
=lim(x->0) [ 1 - 3(cosx)^2 + 2(cosx)^3 ]/[ (1/2)x^4 ]
(0/0 分子分母分别求导)
=lim(x->0) [ 6cosx.sinx - 6(cosx)^2. sinx ]/( 2x^3 )
=lim(x->0) (3sin2x - 3sin2x.cosx)/( 2x^3 )
=[lim(x->0) 3sin2x/x ] . lim(x->0) (1 - cosx)/( 2x^2 )
=6lim(x->0) (1 - cosx)/( 2x^2 )
=6lim(x->0) (1/2)x^2/( 2x^2 )
=6/4
=3/2
(2)
x->0
ln(1+x) = x -(1/2)x^2 +o(x^2)
e^x = 1+ x+(1/2)x^2 +o(x^2)
ln(1+x) -e^x +1 = -x^2 +o(x^2)
lim(x->0) [ 1/(e^x-1) - 1/ln(1+x) ]
=lim(x->0) [ln(1+x) - e^x +1 ]/[(e^x-1).ln(1+x) ]
=lim(x->0) [ln(1+x) - e^x +1 ]/x^2
=lim(x->0) -x^2/x^2
=-1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询