3个回答
展开全部
3. f'(x) = √[(x-1)^2+1] ,
f''(x) = (1/2)[(x-1)^2+1]^(-1/2) 2(x+1) = (x+1)/√[(x-1)^2+1]
f''(x) = 0 得 x = -1,
x < -1 时,f''(x) < 0; x > -1 时,f''(x) > 0,
则 x = - 1 时为拐点, f(-1) = ∫<1, -1>√[(t-1)^2+1]dt
令 t = 1+tanu, 则 dt = (secu)^2du
f(-1) = ∫<0, -arctan2>(secu)^3du = ∫<0, -arctan2>secudtanu
= [secutanu]<0, -arctan2> - ∫<0, -arctan2>(tanu)^2secudu
= -2√5 - f(1) + ∫<0, -arctan2>secudu
解得 f(-1) = -√5 + (1/2)[ln(secu+tanu)]<0, -arctan2>
= -√5 + (1/2)ln(√5-2)
得拐点 (-1, -√5+(1/2)ln(√5-2) )
曲线凸区间 (-∞, -1), 凹区间 (-1, +∞).
f''(x) = (1/2)[(x-1)^2+1]^(-1/2) 2(x+1) = (x+1)/√[(x-1)^2+1]
f''(x) = 0 得 x = -1,
x < -1 时,f''(x) < 0; x > -1 时,f''(x) > 0,
则 x = - 1 时为拐点, f(-1) = ∫<1, -1>√[(t-1)^2+1]dt
令 t = 1+tanu, 则 dt = (secu)^2du
f(-1) = ∫<0, -arctan2>(secu)^3du = ∫<0, -arctan2>secudtanu
= [secutanu]<0, -arctan2> - ∫<0, -arctan2>(tanu)^2secudu
= -2√5 - f(1) + ∫<0, -arctan2>secudu
解得 f(-1) = -√5 + (1/2)[ln(secu+tanu)]<0, -arctan2>
= -√5 + (1/2)ln(√5-2)
得拐点 (-1, -√5+(1/2)ln(√5-2) )
曲线凸区间 (-∞, -1), 凹区间 (-1, +∞).
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询