展开全部
使用分部积分法。
设 u = x², dv = cos(2x)dx。则有 du = 2x *dx,v = 1/2 * sin(2x)。那么,原积分:
= ∫u*dv
= u * dv - ∫v * du
= 1/2 * sin(2x) * x²|x=0→π - ∫[1/2 * sin(2x) * 2x * dx]
= 1/2 *[π²*sin(2π) - 0² *sin0] - ∫x * sin(2x) *dx
= -∫x * sin(2x) *dx
再设 r = x,ds = sin(2x)*dx。则 dr = dx, s = -1/2 * cos(2x)。那么:
∫x * sin(2x) * dx
=∫r *ds
= r * s - ∫s * dr
= -1/2 * x * cos(2x)|x=0→π + 1/2 *∫cos(2x) *dx
=-1/2 * [π *cos(2π) - 0 *cos0] + 1/4 * sin(2x)|x=0→π
=-1/2 * π + 1/4 * [sin(2π) - sin0]
=-π/2
所以,原积分:
= π/2
设 u = x², dv = cos(2x)dx。则有 du = 2x *dx,v = 1/2 * sin(2x)。那么,原积分:
= ∫u*dv
= u * dv - ∫v * du
= 1/2 * sin(2x) * x²|x=0→π - ∫[1/2 * sin(2x) * 2x * dx]
= 1/2 *[π²*sin(2π) - 0² *sin0] - ∫x * sin(2x) *dx
= -∫x * sin(2x) *dx
再设 r = x,ds = sin(2x)*dx。则 dr = dx, s = -1/2 * cos(2x)。那么:
∫x * sin(2x) * dx
=∫r *ds
= r * s - ∫s * dr
= -1/2 * x * cos(2x)|x=0→π + 1/2 *∫cos(2x) *dx
=-1/2 * [π *cos(2π) - 0 *cos0] + 1/4 * sin(2x)|x=0→π
=-1/2 * π + 1/4 * [sin(2π) - sin0]
=-π/2
所以,原积分:
= π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫x²cos2xdx
=1/2*∫x²dsin2x
=1/2*x²sin2x-1/2*∫2xsin2xdx
=1/2*x²sin2x+1/2*∫xdcos2x
=1/2*x²sin2x+1/2*xcos2x-1/2*∫cos2xdx
=1/2*x²sin2x+1/2*xcos2x-1/4*sin2x+C
你的1/2系数全部不见了???
=1/2*∫x²dsin2x
=1/2*x²sin2x-1/2*∫2xsin2xdx
=1/2*x²sin2x+1/2*∫xdcos2x
=1/2*x²sin2x+1/2*xcos2x-1/2*∫cos2xdx
=1/2*x²sin2x+1/2*xcos2x-1/4*sin2x+C
你的1/2系数全部不见了???
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一步就错了, d(1/2*sin2x)=cos2xdx
∫[0,π]x²cos2xdx
=1/2*∫[0,π]x²dsin2x
=1/2*x²sin2x|[0,π]-1/2*∫[0,π]sin2x*2xdx
=0+1/2*∫[0,π]xdcos2x
=1/2*xcos2x|[0,π]-1/2*∫[0,π]cos2xdx
=π/2-1/4*sin2x|[0,π]
=π/2-0
=π/2
∫[0,π]x²cos2xdx
=1/2*∫[0,π]x²dsin2x
=1/2*x²sin2x|[0,π]-1/2*∫[0,π]sin2x*2xdx
=0+1/2*∫[0,π]xdcos2x
=1/2*xcos2x|[0,π]-1/2*∫[0,π]cos2xdx
=π/2-1/4*sin2x|[0,π]
=π/2-0
=π/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询