14设u=x2−y2,v=exy,则z=f(u,v)
因此
∂z∂x=∂f∂u∂u∂x+∂f∂v∂v∂x=2xf′1+yexyf′2
∂z∂y=∂f∂u∂u∂y+∂f∂v∂v∂y=−2yf′1+xexyf′2
∴∂2z∂x∂y=∂∂y(2xf′1+yexyf′2)=2x∂f′1∂y+exyf′2+xyexyf′2+yexy∂f′2∂y=2xf11''⋅(−2y)+2xf12''⋅(xexy)+exyf′2+xyexyf′2+yexy[f21''⋅(−2y)+f22''⋅(xexy)]=−4xyf11''+2(x2−y2)exyf12''+xye2xyf22''+(1+xy)exyf′2
15.积分区域:0≤x≤1,0≤y≤x
∫∫3xy^2dxdy
=3∫xdx∫y^2dy
=3∫x[y^3/3]dx
=3∫x*x^3/3dx
=∫x^4dx
=x^5/5
=1/5
16
记D1=(x,y)|x2+y2⩽1,(x,y)∈D
D2=(x,y)|x2+y2>1,(x,y)∈D
∴∬D|x2+y2−1|dσD1(x2+y2−1)dxdy+∬D2(x2+y2−1)dxdyD(x2+y2−1)dxdy−∬D1(x2+y2−1)dxdy=−∬=−∫π20dθ∫10(r2−1)rdr+∬=π8+∫10dx∫10(x2+y2−1)dy−∫π20dθ∫10(r2−1)rdr=π4−13
17【解答】
解:
级数通项un=ln(n/(n+1))
lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0
因为sn=ln(1/(n+1))
所以S=lim(n→无穷)SN=lim(n→无穷)ln(1/(n+1))不存在
所以该级数发散