分解因式和十字相乘法到底怎么解啊?
2个回答
展开全部
以x的平方-3x+2=0为例,先画个大叉,因为x的平方的系数是1,1=1x1,所以在叉的左上方和左下方分别写上1;因为一次项系数为-3,所以常数2应被分解成负数,-1和-2,把-1和-2分别写在叉的右上方和右下方,然后利用把它们交叉相乘,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分解因式方法有:公式法、提取公因式法和十字相乘法3种。
十字相乘法方法:
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两
十字相乘法
个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果
:
ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:χ²+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解.比如说:把χ×2+7χ+12进行因式分解.
.
上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所
??
以
上式可以分解为:x²+7x+12=(x+3)(x+4)
.
又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a²+2a-15=(a+5)(a-3).
讲解:
x²-3x+2=如下:
x
1
╳
x
2
左边x乘x=x²
右边-1乘-2=2
中间-1乘x+-2乘x(对角)=-3x
上边的【x+(-1)】乘下边的【x+(-2)】
就等于(x-1)*(x-2)
x²-3x+2=(x-1)*(x-2)例题
例1
把2x²-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1
1
╳
2
3
1×3+2×1
=5
1
3
╳
2
1
1×1+2×3
=7
1
-1
╳
2
-3
1×(-3)+2×(-1)
=-5
1
-3
╳
2
-1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解
2x²-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1
c1
╳
a2
c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
a^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
十字相乘法方法:
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两
十字相乘法
个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果
:
ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
基本式子:χ²+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解.比如说:把χ×2+7χ+12进行因式分解.
.
上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所
??
以
上式可以分解为:x²+7x+12=(x+3)(x+4)
.
又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a²+2a-15=(a+5)(a-3).
讲解:
x²-3x+2=如下:
x
1
╳
x
2
左边x乘x=x²
右边-1乘-2=2
中间-1乘x+-2乘x(对角)=-3x
上边的【x+(-1)】乘下边的【x+(-2)】
就等于(x-1)*(x-2)
x²-3x+2=(x-1)*(x-2)例题
例1
把2x²-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1
1
╳
2
3
1×3+2×1
=5
1
3
╳
2
1
1×1+2×3
=7
1
-1
╳
2
-3
1×(-3)+2×(-1)
=-5
1
-3
╳
2
-1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解
2x²-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1
c1
╳
a2
c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
a^2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询