设函数f(x)=√3/2-√3sin^2wx-sinwxcoswx,且图像的一个对称中心到最近的对称轴的距离为π/4
1个回答
展开全部
f(x)=√3/2-√3sin²wx-sinwxcoswx
=(√3/2)*(1-
2sin²
wx)-
(1/2)*2sinwxcoswx
=(√3/2)*cos(2wx)-
(1/2)*sin(2wx)
=cos(2wx)*cos(π/6)
-
sin(2wx)*sin(π/6)
=cos(2wx
+
π/6)
已知
函数图像
的一个对称中心到最近的
对称轴
的距离为π/4,则有:
最小正周期
T=2π/(2w)=4*π/4
解得:w=1
那么
函数解析式
可写为:f(x)=cos(2x+
π/6)
若π/2≤x≤π,那么:π≤2x≤2π
则有:7π/6≤2x+
π/6≤13π/6
所以当2x+
π/6=2π,即x=11π/12时,函数有最大值为1;
当2x+
π/6=7π/6,即x=π/2时,函数有最小值为-(√3)/2。
=(√3/2)*(1-
2sin²
wx)-
(1/2)*2sinwxcoswx
=(√3/2)*cos(2wx)-
(1/2)*sin(2wx)
=cos(2wx)*cos(π/6)
-
sin(2wx)*sin(π/6)
=cos(2wx
+
π/6)
已知
函数图像
的一个对称中心到最近的
对称轴
的距离为π/4,则有:
最小正周期
T=2π/(2w)=4*π/4
解得:w=1
那么
函数解析式
可写为:f(x)=cos(2x+
π/6)
若π/2≤x≤π,那么:π≤2x≤2π
则有:7π/6≤2x+
π/6≤13π/6
所以当2x+
π/6=2π,即x=11π/12时,函数有最大值为1;
当2x+
π/6=7π/6,即x=π/2时,函数有最小值为-(√3)/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询