求等差数列的所有公式

所有的!!!!!!!!... 所有的!!!!!!!! 展开
 我来答
苏益巩凡桃
2019-10-07 · TA获得超过3711个赞
知道大有可为答主
回答量:3138
采纳率:28%
帮助的人:188万
展开全部
如果一个
数列
从第二项起,每一项与它的前一项的差等于同一个
常数
,这个数列就叫做
等差数列
,这个常数叫做等差数列的
公差
,公差常用
字母
d表示。
等差数列的通项公式为:an=a1+(n-1)d
(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
(2)
以上n均属于
正整数

从(1)式可以看出,an是n的
一次函数
(d≠0)或
常数函数
(d=0),(n,an)排在一条
直线
上,由(2)式知,Sn是n的
二次函数
(d≠0)或一次函数(d=0,a1≠0),且
常数项
为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的
平均数

且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列
广义
的通项公式。
从等差数列的
定义
、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的
尺寸
划分
级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式