不定积分1/根号(a^2+x^2)怎么求
4个回答
展开全部
∫dx/[x^2.√(a^2+x^2)]
x=atanu
dx=a(secu)^2 .du
∫dx/[x^2.√(a^2+x^2)]
=∫a(secu)^2 .du/[ (atanu)^2. (asecu)]
=(1/a)∫ (secu)/(tanu)^2 du
=(1/a) ∫ cosu/(sinu)^2 du
= -(1/a) [ 1/sinu] + C
= -(1/a) [ √(a^2+x^2)/x] + C
扩展资料
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
展开全部
好像有个公式吧!
如果要问公式怎么推导,就用三角函数代换嘛!把a提出来,令x=a*tan(x)
很简单的,自己算一下。
如果要问公式怎么推导,就用三角函数代换嘛!把a提出来,令x=a*tan(x)
很简单的,自己算一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询