已知数列{an}满足a1=1,an=1/2*a(n-1)+1 ,(n≥2),求{an}的通项公式

 我来答
巧妇九妹pp
2019-09-04 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:891万
展开全部
解:
an=4-(4/a(n-1)),
an-2=2-4/a(n-1)
=[2a(n-1)-4]/a(n-1)
两边取倒数得到
1/(an-2)=a(n-1)/[2a(n-1)-4]=1/2
1/[a(n-1)-2]
然后采用逐级消除法
依次将n=n-1,n-2……2
带入
然后所有等式相加
1/(an-2)-1/[a(n-1)-2]=1/2
1/(a(n-1)-2)-1/[a(n-2)-2]=1/2
……
1/(a2-2)-1/(a1-2)=1/2
左边消去很多项

1/(an-2)-1/(a1-2)=(n-1)1/2
将a1=2带入得:
an=2/n
2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式