高中数学复数问题
1已知x,y共轭复数且(x-y)^2+xyi=26+4i,求|x|2设复数z满足1-z/1+z=i求|1+z|3已知实数x满足(1-3i)x^2+ax=3-i(a∈R),...
1已知x,y 共轭复数 且(x-y)^2 +xyi = 26+4i ,求|x| 2设复数z满足1-z/1+z=i 求|1+z| 3已知实数x满足(1-3i)x^2+ax=3-i (a∈R),求a 值 题 点,期待 家 答,谢谢
展开
1个回答
展开全部
种复数
题目主要
实部
虚部
1.设x=a+bi,y=a-bi
(x-y)^2
+xyi
=
-4b^2
+(a^2+b^2)i=
26+4i
联立-4b^2=26
(a^2+b^2)=4
2.
题目应该
设复数z满足1-1/z+z=i
求|1+z|
吧
设z=a+bi,
1-(a-bi)/[(a+bi)(a-bi)]+z=1-(a-bi)/(a^2+b^2)+a+bi
实部
虚部=1-a/(a^2+b^2)+a+bi/(a^2+b^2)+bi=i
则联立1-a/(a^2+b^2)+a=0
b/(a^2+b^2)+b=1
3.(1-3i)x^2+ax=3-i
联立x^2+ax=3
-3i*x^2=-i
题目主要
实部
虚部
1.设x=a+bi,y=a-bi
(x-y)^2
+xyi
=
-4b^2
+(a^2+b^2)i=
26+4i
联立-4b^2=26
(a^2+b^2)=4
2.
题目应该
设复数z满足1-1/z+z=i
求|1+z|
吧
设z=a+bi,
1-(a-bi)/[(a+bi)(a-bi)]+z=1-(a-bi)/(a^2+b^2)+a+bi
实部
虚部=1-a/(a^2+b^2)+a+bi/(a^2+b^2)+bi=i
则联立1-a/(a^2+b^2)+a=0
b/(a^2+b^2)+b=1
3.(1-3i)x^2+ax=3-i
联立x^2+ax=3
-3i*x^2=-i
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询