数学如何学会总结
2个回答
展开全部
一、夯实基础
“题在书外,理在书中。”熟练掌握基础知识是我们学习取得成功的根本,很多同学恰恰是忽视了这一点。所以在数学学习中,首要的一条就是夯实基础,熟练掌握基本概念和基本方法。
二、勤于思考
数学是理科性很强的一科,要求我们多动脑,勤思考。有的同学做题时避难就易,或跳过不做,或简单看一眼认定自己不会,其实这只不过是你为自己畏难而找的借口。要想数学成绩得到提高,必须养成独立思考的习惯,遇到难题要开动脑筋,仔细研究,不能有依赖心理。当你经过自己的深入思考而解出题目时,你就会体会到“山重水复疑无路,柳暗花明又一村”有多么美妙,同时也会增强你对数学的兴趣与热情。
三、加强训练
“工欲善其事,必先利其器。”高考数学试卷只有21道题,要想把这21题做好,需要我们平时无数次的演算、训练,提高解题和应试能力。每天的训练可能会很枯燥,但是我们没有办法逃避,只能以最好的状态去接受,每天都对自己说:“我能行!”这样在训练时才能保持良好的心态,抵制抗拒心理。另外,对我们复读生来说,时间是很紧张的,这就要求我们在训练时要针对自身情况有选择地做题,尤其是对自己不熟悉,掌握不牢固的知识点要搜寻相关题目强化训练,这样才能在考试中游刃有余,既提高正确率,又加快了速度。
四、归纳总结
个人认为,这是数学学习过程中最重要的一环。对于所学的知识,要梳理汇总,按照知识的内在联系进行分类、整理、综合、深化,从而融会贯通,形成一个完整的知识体系,一个属于自己的知识体系。很多同学追求多做题、做新题,而忽视了对错题的纠正,对知识的总结,其结果往往适得其反。缺少对错题的归纳整理,对不熟悉知识点的梳理总结,做再多的题目都是徒然。当然,我说的纠错不是简单地将正确的答案写出来,我们还要在后面用红笔作注释,对一些重点、难点、易错点作批注,以后再看的时候就有重点了。同时,在归纳总结时要分类,比如“已知函数f(x)=ln(mx2+ 4mx+m+3),若f(x)定义域为R,求m取值范围”等比较容易弄错的题目,要放在一起总结,对一些零散的知识,比如求数列的通项公式的方法,有累加法、累乘法、换元法、倒数法、待定系数法等等,要加以概括梳理,形成一个系统的体系。
有的同学可能发现老师讲解题目明明是听懂了,可是拿到题自己做就不会了,这就要求我们整理题目,迁移知识,学以致用,其实整理题目的过程也就是理清思路,掌握方法的过程
“题在书外,理在书中。”熟练掌握基础知识是我们学习取得成功的根本,很多同学恰恰是忽视了这一点。所以在数学学习中,首要的一条就是夯实基础,熟练掌握基本概念和基本方法。
二、勤于思考
数学是理科性很强的一科,要求我们多动脑,勤思考。有的同学做题时避难就易,或跳过不做,或简单看一眼认定自己不会,其实这只不过是你为自己畏难而找的借口。要想数学成绩得到提高,必须养成独立思考的习惯,遇到难题要开动脑筋,仔细研究,不能有依赖心理。当你经过自己的深入思考而解出题目时,你就会体会到“山重水复疑无路,柳暗花明又一村”有多么美妙,同时也会增强你对数学的兴趣与热情。
三、加强训练
“工欲善其事,必先利其器。”高考数学试卷只有21道题,要想把这21题做好,需要我们平时无数次的演算、训练,提高解题和应试能力。每天的训练可能会很枯燥,但是我们没有办法逃避,只能以最好的状态去接受,每天都对自己说:“我能行!”这样在训练时才能保持良好的心态,抵制抗拒心理。另外,对我们复读生来说,时间是很紧张的,这就要求我们在训练时要针对自身情况有选择地做题,尤其是对自己不熟悉,掌握不牢固的知识点要搜寻相关题目强化训练,这样才能在考试中游刃有余,既提高正确率,又加快了速度。
四、归纳总结
个人认为,这是数学学习过程中最重要的一环。对于所学的知识,要梳理汇总,按照知识的内在联系进行分类、整理、综合、深化,从而融会贯通,形成一个完整的知识体系,一个属于自己的知识体系。很多同学追求多做题、做新题,而忽视了对错题的纠正,对知识的总结,其结果往往适得其反。缺少对错题的归纳整理,对不熟悉知识点的梳理总结,做再多的题目都是徒然。当然,我说的纠错不是简单地将正确的答案写出来,我们还要在后面用红笔作注释,对一些重点、难点、易错点作批注,以后再看的时候就有重点了。同时,在归纳总结时要分类,比如“已知函数f(x)=ln(mx2+ 4mx+m+3),若f(x)定义域为R,求m取值范围”等比较容易弄错的题目,要放在一起总结,对一些零散的知识,比如求数列的通项公式的方法,有累加法、累乘法、换元法、倒数法、待定系数法等等,要加以概括梳理,形成一个系统的体系。
有的同学可能发现老师讲解题目明明是听懂了,可是拿到题自己做就不会了,这就要求我们整理题目,迁移知识,学以致用,其实整理题目的过程也就是理清思路,掌握方法的过程
展开全部
目前学校的教学方法,最主要的就是教会学生“总结”。而总结的核心,就是“分类”。目前的这种以分类为核心的总结方法,由于过于僵化,所以,随着分类不断细化,思维就必然越来越僵化。
比如某个学生本来又会做三角函数的题目,也会做一元二次方程的题目,也会用一元二次方程的方法解决很多三角函数的题目,而且做题速度很快。但老师教会他“总结”后,他把三角函数的题目分成好几类,每一类又分成了好几类,等等不断的细分下去。
然后,在分类过程中,进行说明,比如这类题目应该用一元二次方程,另外一类题目不该用一元二次方程,等等。经过这么细致的分类之后,他确实有能会做了一些新的类型的题目,但原来的快速解题能力明显的下降了。而且,以前做题的那种轻松、流畅的感觉,彻底消失了。
那么,如何解决“分类”与“灵活”的矛盾呢?
其实方法很简单,就是在“分类”的过程中,你的进一步的“分类”,不要受其他人的已有的分类的限制,也不要被自己的分类所限制,也不要被自己的总结的各种方法所限制。你可以横向分类、竖向分类、正向分类、反向分类,分类之后再分类,不同的分类之间进行分类,等等。
对于数学,还有一些方法:你总结出很多解题技巧之后,进行分类。例如你总结出某种解题技巧可解决哪些题型,而哪些题型可以变化成另外的题型,等等。总结这些东西到一定程度之后,你就尝试着“自己出题”,在自己出题的过程中,针对某一个题型,找“一题多解”类参考书,尤其是一种题型有几十种以上解题技巧的,专门找超出你分类范围之外的,这样,你的大脑和笔记本中的“解题技巧体系”就得到进一步扩充了。
从“原理”的角度,“分类”是“思维支脚”的形成和细化的一个重要方法这个过程中,你的大脑中的“思维海”被强行“犁”出了很多“思维缝隙”,这些“思维缝隙”有可能把原有的“思维钩子”给弄断掉了。所以,你需要重塑或者新建一些“思维钩子”(把断掉的“思维钩子”再连接起来,那是不可能的,“思维钩子”可不是现实生活中的绳子)。
比如某个学生本来又会做三角函数的题目,也会做一元二次方程的题目,也会用一元二次方程的方法解决很多三角函数的题目,而且做题速度很快。但老师教会他“总结”后,他把三角函数的题目分成好几类,每一类又分成了好几类,等等不断的细分下去。
然后,在分类过程中,进行说明,比如这类题目应该用一元二次方程,另外一类题目不该用一元二次方程,等等。经过这么细致的分类之后,他确实有能会做了一些新的类型的题目,但原来的快速解题能力明显的下降了。而且,以前做题的那种轻松、流畅的感觉,彻底消失了。
那么,如何解决“分类”与“灵活”的矛盾呢?
其实方法很简单,就是在“分类”的过程中,你的进一步的“分类”,不要受其他人的已有的分类的限制,也不要被自己的分类所限制,也不要被自己的总结的各种方法所限制。你可以横向分类、竖向分类、正向分类、反向分类,分类之后再分类,不同的分类之间进行分类,等等。
对于数学,还有一些方法:你总结出很多解题技巧之后,进行分类。例如你总结出某种解题技巧可解决哪些题型,而哪些题型可以变化成另外的题型,等等。总结这些东西到一定程度之后,你就尝试着“自己出题”,在自己出题的过程中,针对某一个题型,找“一题多解”类参考书,尤其是一种题型有几十种以上解题技巧的,专门找超出你分类范围之外的,这样,你的大脑和笔记本中的“解题技巧体系”就得到进一步扩充了。
从“原理”的角度,“分类”是“思维支脚”的形成和细化的一个重要方法这个过程中,你的大脑中的“思维海”被强行“犁”出了很多“思维缝隙”,这些“思维缝隙”有可能把原有的“思维钩子”给弄断掉了。所以,你需要重塑或者新建一些“思维钩子”(把断掉的“思维钩子”再连接起来,那是不可能的,“思维钩子”可不是现实生活中的绳子)。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询