数列{an}的通项公式an=n(n+1),求其前n项和Sn
1个回答
展开全部
数列{an}的通项公式an=n(n+1),求其前n项和Sn
an=n^2+n,
s1=1^2+2^2+3^2+...+n^2
=n(n+1)(2n+1)/6,
s2=1+2+3+...+n
=n(n+1)/2,
数列{an}前n项和Sn=s1+s2,
Sn=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n/3+2/3)
=n(n+1)(n+2)/3
=(n^3+3n^2+2n)/3
=(1/3)n^3+n^2+(2/3)n.
答:其前n项和Sn
为
(1/3)n^3+n^2+(2/3)n.
an=n^2+n,
s1=1^2+2^2+3^2+...+n^2
=n(n+1)(2n+1)/6,
s2=1+2+3+...+n
=n(n+1)/2,
数列{an}前n项和Sn=s1+s2,
Sn=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n/3+2/3)
=n(n+1)(n+2)/3
=(n^3+3n^2+2n)/3
=(1/3)n^3+n^2+(2/3)n.
答:其前n项和Sn
为
(1/3)n^3+n^2+(2/3)n.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询