高二函数的极值与最值
1.求函数y=㏑(x+1)-1/4x^2在[0,2]的最大值和最小值2.函数y=x^3-3ax^2-24xa^2+b的极大值为正,极小值为负,二者之差为4.(1)...
1.求函数y=㏑(x+1)-1/4x^2在[0,2]的最大值和最小值 2.函数y=x^3-3ax^2-24xa^2+b的极大值为正,极小值为负,二者之差为4. (1)求实数a的值 (2)求实数b的取值范围 要过程
展开
1个回答
展开全部
1.求函数y=㏑(x+1)-1/4x^2在[0,2]的最大值和最小值
解:在[0,2]上ln(x+1)单调递增,-1/4x^2单调递增,所以函数y=㏑(x+1)-1/4x^2在[0,2]单调递增。
或者对函数求导得y'=1/(1+x)+1/(2x^2),y'在[0,2]上恒正,即y在[0,2]上单调递增。
所以函数无最小值(为负无穷),最大值为ln3-1/16.
2.函数y=x^3-3ax^2-24xa^2+b的极大值为正,极小值为负,二者之差为4.
(1)求实数a的值
(2)求实数b的取值范围
解:
对函数求导得:y'=3x^2-6ax-24a^2=(x+2a)(3x-12a).
所以函数在x=-2a取得极小值,x=4a处取得极大值,或者x=4a取得极小值,x=-2a取得极大值。
把x=-2a代入得y1=28a^3+b;把x=4a代入得y2=-80a^3+b
|y1-y2|=108|a^3|=4,a=3或-3.
当a=3时,y1=756+b,为最大值;y2=-2160+b,为最小值。
由题目知道:
y1>0,y2<0,所以-756<b<2160;
当a=-3时,y1=-756+b,为最小值;y2=2160+b,为最大值。
y1<0,y2>0,所以-2160<b<756;
解:在[0,2]上ln(x+1)单调递增,-1/4x^2单调递增,所以函数y=㏑(x+1)-1/4x^2在[0,2]单调递增。
或者对函数求导得y'=1/(1+x)+1/(2x^2),y'在[0,2]上恒正,即y在[0,2]上单调递增。
所以函数无最小值(为负无穷),最大值为ln3-1/16.
2.函数y=x^3-3ax^2-24xa^2+b的极大值为正,极小值为负,二者之差为4.
(1)求实数a的值
(2)求实数b的取值范围
解:
对函数求导得:y'=3x^2-6ax-24a^2=(x+2a)(3x-12a).
所以函数在x=-2a取得极小值,x=4a处取得极大值,或者x=4a取得极小值,x=-2a取得极大值。
把x=-2a代入得y1=28a^3+b;把x=4a代入得y2=-80a^3+b
|y1-y2|=108|a^3|=4,a=3或-3.
当a=3时,y1=756+b,为最大值;y2=-2160+b,为最小值。
由题目知道:
y1>0,y2<0,所以-756<b<2160;
当a=-3时,y1=-756+b,为最小值;y2=2160+b,为最大值。
y1<0,y2>0,所以-2160<b<756;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询