函数求导公式是什么?
1、(C)'=0;
2、(x^a)'=ax^(a-1);
3、(a^x)'=(a^x)lna,a>0,a≠1;(e^x)'=e^x;
4、[logx]'=1/[xlna],a>0,a≠1,(lnx)'=1/x;
5、y=f(t),t=g(x),dy/dx=f'(t)*g'(x);
6、x=f(t),y=g(t),dy/dx=g'(t)/f'(t)。
扩展资料:
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x;y'=a^xlna;y=e^x y'=e^x
4.y=logax y'=logae/x;y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
函数的变化率
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
求导数学中的名词,即对函数进行求导。用()'表示
(1)求函数y=f(x)在x0处导数:
①求函数的增量Δy=f(x0+Δx)-f(x0)
②求平均变化率
③取极限,得导数。
(2)几种常见函数的导数公式:
①C'=0(C为常数);
②(x^n)'=nx^(n-1)
(n∈Q);
③(sinx)'=cosx;
④(cosx)'=-sinx;
⑤(e^x)'=e^x;
⑥(a^x)'=a^xIna
(ln为自然对数)
(3)导数的四则运算法则:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2(4)复合函数的导数
复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
扩展资料:
求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
在经济活动中会大量涉及此类函数,注意到它很特别。既不是指数函数又不是幂函数,它的幂底和指数上都有自变量x,所以不能用初等函数的微分法处理了。这里介绍一个专门解决此类函数的方法,对数求导法。
广告 您可能关注的内容 |