3个回答
展开全部
这一题的极限,直接可以判定成(1/2)^+∞->0,不用转化成e的指数。如果按照图上的步骤转化成e的指数,可以这么判断,x->+∞时,x^2->+∞,ln((x+2)/(2x-1))->ln(1/2)<0,则x^2*ln((x+2)/(2x-1))->-∞,e^-∞->0,所以原极限=0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->+∞
(x+2)/(2x-1) -> 1/2
lim(x->+∞) [(x+2)/(2x-1) ]^(x^2)
= 0
(x+2)/(2x-1) -> 1/2
lim(x->+∞) [(x+2)/(2x-1) ]^(x^2)
= 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询