
已知a,b,c分别为三角形ABC的三边,2bcosC=2a-c,求B
展开全部
答:
三角形ABC满足:2bcosC=2a-c
结合正弦定理:a/sinA=b/sinB=c/sinC=2R
则有:2sinBcosC=2sinA-sinC
因为:sinA=sin(B+C)=sinBcosC+cosBsinC
所以:2sinBcosC=2sinBcosC+2cosBsinC-sinC
所以:
2cosBsinC-sinC=0
因为:sinC>0
所以:
2cosB-1=0
cosB=1/2
所以:B=60°
三角形ABC满足:2bcosC=2a-c
结合正弦定理:a/sinA=b/sinB=c/sinC=2R
则有:2sinBcosC=2sinA-sinC
因为:sinA=sin(B+C)=sinBcosC+cosBsinC
所以:2sinBcosC=2sinBcosC+2cosBsinC-sinC
所以:
2cosBsinC-sinC=0
因为:sinC>0
所以:
2cosB-1=0
cosB=1/2
所以:B=60°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询