四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,求证:BD²=AD²+CD²

 我来答
北慕1718
2022-05-20 · TA获得超过854个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:49.8万
展开全部
证明:如图,连接AC,
∵AD=CD,∠ADC=60°,
∴△ADC是正三角形.
∴DC=CA=AD.
将△DCB绕点C顺时针旋转60°到△ACE的位置,连接EB,
∴DB=AE,CB=CE,∠BCE=∠ACE-∠ACB=∠BCD-∠ACB=∠ACD=60°,
∴△CBE为正三角形.
∴BE=BC,∠CBE=60°.
∴∠ABE=∠ABC+∠CBE=90°.
在Rt△ABE中,由勾股定理得AE2=AB2+BE2.
∴BD2=AB2+BC2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式