求定积分在区间(正无穷~0)∫1/(1+e^x) dx
1个回答
展开全部
令y=e^x => x=lny,dx=1/y dy
当x=0,y=1 // 当x->仔银+∞,y->+∞
∫[0,+∞]1/(1+e^x) dx
= ∫[1,+∞]1/[y(1+y)] dy
= ∫[1,+∞][(1+y)-y]/[y(1+y)] dy
= ∫[1,+∞兆伏][1/y-1/(1+y)] dy
= ln|y| - ln|1+y|
= ln|y/念猜宴(1+y)|
= ln|1/(1+1/y)|
= ln[1/(1+0)] - ln[1/(1+1)]
= ln(1) - ln(1/2)
= ln(2)
当x=0,y=1 // 当x->仔银+∞,y->+∞
∫[0,+∞]1/(1+e^x) dx
= ∫[1,+∞]1/[y(1+y)] dy
= ∫[1,+∞][(1+y)-y]/[y(1+y)] dy
= ∫[1,+∞兆伏][1/y-1/(1+y)] dy
= ln|y| - ln|1+y|
= ln|y/念猜宴(1+y)|
= ln|1/(1+1/y)|
= ln[1/(1+0)] - ln[1/(1+1)]
= ln(1) - ln(1/2)
= ln(2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询