当整数n>=0,求证:x^(n+2)+(x+1)^(2n+1)能被x^2+x+1整数
1个回答
展开全部
显然n=0时:
x^(n+2)+(x+1)^(2n+1)=x^2+x+1
能被x^2+x+1整除.
如果假设n=k时:
x^(n+2)+(x+1)^(2n+1)=x^(k+2)+(x+1)^(2k+1) 能被x^2+x+1整除, 那么n=k+1时:
x^(n+2)+(x+1)^(2n+1)
=x^(k+3)+(x+1)^(2k+3)
=x^(k+3)+(x^2+2x+1)(x+1)^(2k+1)
=x(x^(k+2)+(x+1)^(2k+1))+(x^2+x+1)(x+1)^(2k+1)
也能被x^2+x+1整除.
所以当整数n>=0,x^(n+2)+(x+1)^(2n+1)能被x^2+x+1整除.
x^(n+2)+(x+1)^(2n+1)=x^2+x+1
能被x^2+x+1整除.
如果假设n=k时:
x^(n+2)+(x+1)^(2n+1)=x^(k+2)+(x+1)^(2k+1) 能被x^2+x+1整除, 那么n=k+1时:
x^(n+2)+(x+1)^(2n+1)
=x^(k+3)+(x+1)^(2k+3)
=x^(k+3)+(x^2+2x+1)(x+1)^(2k+1)
=x(x^(k+2)+(x+1)^(2k+1))+(x^2+x+1)(x+1)^(2k+1)
也能被x^2+x+1整除.
所以当整数n>=0,x^(n+2)+(x+1)^(2n+1)能被x^2+x+1整除.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询