分数方程怎么做?
3X-(1/2+1/4)=7/12
3X=7/12+3/4
3X=4/3
X=4/9
6.6-5X=3/4-4X
6.6-0.75=-4X+5X
X=5.85
1.1X+2.2=5.5-3.3X
1.1X+3.3X=5.5-2.2
4.4X=3.3
X=3/4=4/3
(0.5+x)+x=9.8÷2
2(X+X+0.5)=9.8
25000+x=6x
3200=450+5X+X
X-0.8X=6
12x-8x=4.8
7.5*2X=15
1.2x=81.6
x+5.6=9.4
52-x =15
91÷x =1.3
X+8.3=10.7
15x =3
3x-8=16
7(x-2)=2x+3
3x+9=2718(x-2)=270
12x=300-4x
7x+5.3=7.4
3x÷5=4.8
30÷x+25=85
1.4×8-2x=6
6x-12.8×3=0.06
410-3x=170
3(x+0.5)=21
0.5x+8=43
6x-3x=18
1.5x+18=3x
5×3-x÷2=8
0.273÷x=0.35
1.8x=0.972
x÷0.756=90
9x-40=5
x÷5+9=21
48-27+5x=31
10.5+x+21=56
x+2x+18=78
(200-x)÷5=30
(x-140)÷70=4
0.1(x+6)=3.3×0.4
4(x-5.6)=1.6
7(6.5+x)=87.5
(27.5-3.5)÷x=4
x+19.8=25.8
5.6x=33.6
9.8-x=3.8
75.6÷x=12.6
5x+12.5=32.3
5(x+8)=102
分数方程方法
①看——看等号两边是否可以直接计算;
②变——如果两边不可以直接计算,就运用和差积商的公式对方程进行变形;
③通——对可以相加减的项进行通分;
④除——两边同时除以一个不为零的数;
注意:
⑴都含有未知数的项才能相加减,或者都不含有未知数的项才能相加减;
⑵除以一个数等于乘以这个数的倒数;
以上内容参考:百度百科-分数方程
编辑 播报
方法一
①看——看等号两边是否可以直接计算;
②变——如果两边不可以直接计算,就运用和差积商的公式对方程进行变形;
③通——对可以相加减的项进行通分;
④除——两边同时除以一个不为零的数;
注意:⑴都含有未知数的项才能相加减,或者都不含有未知数的项才能相加减;
⑵除以一个数等于乘以这个数的倒数;
方法二
1、去括号(没有括号时,先算乘、除,再算加、减)。
2、去分母。
3、 移项。
4、合并同类项。
5、系数化为1。
具体过程
编辑 播报
1、去括号(先去小括号,再去大括号)注意乘法分配律的应用
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c);
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c);
乘法分配律:(a+b)×c=a×c+b×c;
减法的性质:a-b-c=a-(b+c);
除法的性质:a÷b÷c=a÷(b×c);
(注意:去括号时,括号前面是减号的,去掉括号,括号里的每一项要变号,也就是括号里的加号要变减号,减号要变成加号。这是运用了减法的性质)
例如:30x-10(10-x)=100。
解:30x-(10×10-10×x)=100——(乘法分配律)
30x-(100-10x)=100
30x-100+10x=100——(去括号,括号前是减号,去掉括号,括号里的每一项要变号,加号变减号,减号变加号)
40x-100=100——(合并同类项)
40x=100+100——(移项,变号)
40x=200——(合并同类项)
X=5——(系数化为1)
2、去分母:找分母的最小公倍数,等式两边各项都要乘以分母最小公倍数(去分母的目的是,把分数方程化成整数方程)
3、移项:“带着符号搬家”从等式左边移到等式的右边,加号变减号,减号变加号。(移项的目的是,把未知项移到和自然数分别放在等式的两边)
(加号一边省略不写例:2X-3=11 其中2X前面的加号就省略了,3前面是减号,移到等式右边要变成加号)
例如:4x-10=10。
解:4x=10+10——(-10从等式左边移到等式右边变成+10)
4x=20
X=20÷4
X=5
4、合并同类项:含有未知数的各个项相加减,自然数相加减
(也可以先把等式两边能够计算的先算出来,再移项)
例如:6X + 7 + 5X = 18。
解:11X + 7 = 18 ——(先把含有未知数的量相加减)
11X = 18- 7 ——(把+7移到等式右边变成 -7)
11 X = 11
X = 1 ——(系数化为1)
5、系数化为1:(也就是解出未知数的值)