如图:△ABC和△ADE都是等边三角形,AD是BC边上的中线.求证:BE=BD.

 我来答
faker1718
2022-06-25 · TA获得超过986个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.2万
展开全部

证明:∵△ABC是等边三角形,
∴∠BAC=60°,
∵AD为BC边上的中线,
∴AD平分∠BAC.
即∠BAD=∠DAC= ∠BAC=30°,
又∵△ADE为等边三角形,
∴AE=AD=ED,且∠EAD=60°,
而∠BAD=30°,
∴∠EAB=∠EAD﹣∠BAD=30°.
∴∠EAB=∠BAD.
在△ABE与△ABD中,

∴△ABE≌△ABD(SAS),
∴BE=BD.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式