若3阶方阵A的特征值为1,2,5,则|A^2-3A+E|=

 我来答
黑科技1718
2022-06-11 · TA获得超过5891个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.4万
展开全部
方阵A的对应特征根 k 的特征向量 x
Ax=k x
(A^2-3A+E)x=A*Ax-3Ax+x=A*kx-3kx+x=kAx-3kx+x=k^2x-3kx+x=(k^2-3k+1)x
所以x是方阵A^2-3A+E对应特征根(k^2-3k+1)的特征向量
所以,方阵A^2-3A+E的特征向量为1^2-3*1+1,2^2-3*2+1,5^2-3*5+1
即:-1,-1,11
|A^2-3A+E|=(-1)*(-1)*11=11
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式