设f(x)在[a,b]上有二阶连续导数且f(a)=f(b)=0,M=max|f''(x)|,证明
1个回答
展开全部
令F(x)=f(x)从a到x的积分
在x=a,b处展开F(c)
F(c)=F(c+-h)-+f(c+-h)h +(1-t)f'(c-h+th)dt从0到1积分
然后再考虑F(b)-h[f(a)+f(b)]
证明主要用到泰勒公式的积分余项
顺便补充一下,c=a+b/2,h=b-a/2
希望对你有所帮助
在x=a,b处展开F(c)
F(c)=F(c+-h)-+f(c+-h)h +(1-t)f'(c-h+th)dt从0到1积分
然后再考虑F(b)-h[f(a)+f(b)]
证明主要用到泰勒公式的积分余项
顺便补充一下,c=a+b/2,h=b-a/2
希望对你有所帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |