高中数学椭圆知识点

 我来答
正香教育
2022-06-14 · TA获得超过5564个赞
知道大有可为答主
回答量:4883
采纳率:100%
帮助的人:237万
展开全部

  知识点是知识、理论、道理、思想等的相对独立的最小单元。以下是我为大家整理的高中数学椭圆知识点相关内容,仅供参考,希望能够帮助大家!

  一、椭圆知识点总结

  1、椭圆的概念

  在平面内到两定点 F 1 F 2 的距离的和等于常数(大于| F 1 F 2 |)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

  集合 P ={ M || MF 1 |+| MF 2 |=2 a },| F 1 F 2 |=2 c ,其中 a >0, c >0,且 a c 为常数:

  (1)若 a c ,则集合 P 为椭圆;

  (2)若 a c ,则集合 P 为线段;

  (3)若 a c ,则集合 P 为空集。

  2、椭圆的标准方程和几何性质

  一条规律

  椭圆焦点位置与 x 2 y 2 系数间的关系:

  两种方法

  (1)定义法:根据椭圆定义,确定段歼迅 a 2 b 2 的值,再结合焦点位置,直接写出椭圆方程。

  (2)待定系数法:根据握此椭圆焦点是在 x 轴还是 y 轴上,设出相应形式的标准方程,然后根据条件确定关于 a b c 的'方程组,解出 a 2 b 2 ,从而写出椭圆的标准方程。

  三种技巧

  (1)椭圆上任意一点 M 到焦点 F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为 a c ,最小距离为 a c

  (2)求椭圆离心率 e 时,只改物要求出 a b c 的一个齐次方程,再结合 b 2 a 2 c 2 就可求得 e (0< e <1)。

  (3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:

  ①中心是否在原点;

  ②对称轴是否为坐标轴。

  二、 复习指导

  1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

  2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式