已知f(x)+f((x-1)/x)=2x,求f(x),急,
1个回答
展开全部
我们已知
(1)f(x) + f(1-1/x) = 2x,
接下来,用1-1/x代替x写入(1)式,可知
(2)f(1-1/x) + f(1/(1-x)) = 2(1-1/x),
然后,用1/(1-x)代替x写入(1)式,我们有
(3)f(1/(1-x)) + f(x) = 2(1/(1-x)),
通过观察,我们知道(1)(2)(3)等式左边的f(x)、f(1-1/x)、f(1/(1-x))各出现了2次,所以,把这三个等式左右各自叠加起来我们有
2*[f(x) + f(1-1/x) + f(1/(1-x))] = 2*[x + (1-1/x) + (1/(1-x))]
所以有,
(4)f(x) + f(1-1/x) + f(1/(1-x)) = x + (1-1/x) + (1/(1-x))
利用(4)减去(2),我们立即可以得到
f(x) = x - (1-1/x) + (1/(1-x)) = x-1 + 1/x + 1/(1-x)
(1)f(x) + f(1-1/x) = 2x,
接下来,用1-1/x代替x写入(1)式,可知
(2)f(1-1/x) + f(1/(1-x)) = 2(1-1/x),
然后,用1/(1-x)代替x写入(1)式,我们有
(3)f(1/(1-x)) + f(x) = 2(1/(1-x)),
通过观察,我们知道(1)(2)(3)等式左边的f(x)、f(1-1/x)、f(1/(1-x))各出现了2次,所以,把这三个等式左右各自叠加起来我们有
2*[f(x) + f(1-1/x) + f(1/(1-x))] = 2*[x + (1-1/x) + (1/(1-x))]
所以有,
(4)f(x) + f(1-1/x) + f(1/(1-x)) = x + (1-1/x) + (1/(1-x))
利用(4)减去(2),我们立即可以得到
f(x) = x - (1-1/x) + (1/(1-x)) = x-1 + 1/x + 1/(1-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询