求数列之和 1/(1*3)+1/(2*4)+1/(3*5)+.+1/n*(n+2)之和、 怎么求,
展开全部
裂项
1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+…+1/2[1/n-1/(n+2)]
=1/2[1-1/3+1/2-1/4+1/3-1/5+…+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
=3/4-1/[2(n+1)]-1/[2(n+2)]
1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+…+1/2[1/n-1/(n+2)]
=1/2[1-1/3+1/2-1/4+1/3-1/5+…+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
=3/4-1/[2(n+1)]-1/[2(n+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询