导数计算公式
1个回答
展开全部
导数的基本公式:常数函数的导数公式(C)'=0
幂函数 (X^α)'=αX^(α-1)
(1/X)'=-1/X^2
(X^1/2)'=1/[2X^(1/2)]
指数函数 (a^x)'=a^x㏑a
(e^x)'=e^x
对数函数(loga^x)'=1/(xlna) (a>0 且a≠1)
(lnX)'=1/x
三角函数 正弦(sinx)'=cosx
余弦 (cosx)'=-sinx
正切(tanx)'=(secx)^2
余切(cotx)'=-(cscx)^2
正割(secx)'=secxtanx
余割(cscx)'=-csccotx
反三角函数 反正弦 (arcsinx)'=1/[ (1-X^2)^1/2]
反余弦 (arccosx)'=- 1/[ (1-X^2)^1/2]
反正切 (arctanx)'=1 / (1+X^2)
反余切 (arccotx)'=-1 / (1+X^2)
幂函数 (X^α)'=αX^(α-1)
(1/X)'=-1/X^2
(X^1/2)'=1/[2X^(1/2)]
指数函数 (a^x)'=a^x㏑a
(e^x)'=e^x
对数函数(loga^x)'=1/(xlna) (a>0 且a≠1)
(lnX)'=1/x
三角函数 正弦(sinx)'=cosx
余弦 (cosx)'=-sinx
正切(tanx)'=(secx)^2
余切(cotx)'=-(cscx)^2
正割(secx)'=secxtanx
余割(cscx)'=-csccotx
反三角函数 反正弦 (arcsinx)'=1/[ (1-X^2)^1/2]
反余弦 (arccosx)'=- 1/[ (1-X^2)^1/2]
反正切 (arctanx)'=1 / (1+X^2)
反余切 (arccotx)'=-1 / (1+X^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询