
求 y'=1/(x-y)^2 的通解
1个回答
展开全部
令x-y=u,则y'=1-u'
所以1-u'=1/u^2
du/dx=(u^2-1)/u^2
u^2du/(u^2-1)=dx
两边积分,
左边=∫(u^2-1+1)/(u^2-1)du
=∫du+1/2∫(1/(u-1)-1/(u+1))du
=u+1/2ln|(u-1)/(u+1)|+C
右边=x+C
所以x-y+1/2ln|(x-y-1)/(x-y+1)|=x+C
1/2ln|(x-y-1)/(x-y+1)|=y+C
所以1-u'=1/u^2
du/dx=(u^2-1)/u^2
u^2du/(u^2-1)=dx
两边积分,
左边=∫(u^2-1+1)/(u^2-1)du
=∫du+1/2∫(1/(u-1)-1/(u+1))du
=u+1/2ln|(u-1)/(u+1)|+C
右边=x+C
所以x-y+1/2ln|(x-y-1)/(x-y+1)|=x+C
1/2ln|(x-y-1)/(x-y+1)|=y+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询