证明数列收敛的方法

 我来答
社无小事
高能答主

2022-11-08 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20424

向TA提问 私信TA
展开全部

证明数列收敛的方法:数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。

收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。

相互关系

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{}收敛于a,那么它的任一子数列也收敛于a。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式