已知,点P是直角三角形ABC斜边AB上一动点,

 我来答
机器1718
2022-08-20 · TA获得超过6790个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:156万
展开全部
考点】全等三角形的判定与性质;直角三角形斜边上的中线.
【分析】
(1)证△BFQ≌△AEQ即可;
(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;
(3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可.
(1)AE∥BF,QE=QF,
理由是:如图1,∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,∠BFQ=∠AEQ,
在△BFQ和△AEQ中
∠BFQ=∠AEQ
∠BQF=∠AQE
BQ=AQ
∴△BFQ≌△AEQ(AAS),
∴QE=QF,
故答案为:AE∥BF,QE=QF.
(2)QE=QF,
证明:如图2,延长FQ交AE于D,
∵AE∥BF,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中
∠FBQ=∠DAQ
AQ=BQ
∠BQF=∠AQD
∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是直角三角形DEF斜边上的中线,
∴QE=QF=QD,
即QE=QF.
(3)(2)中的结论仍然成立,
证明:如图3,
延长EQ、FB交于D,
∵AE∥BF,
∴∠1=∠D,
在△AQE和△BQD中
∠1=∠Q
∠2=∠3
AQ=BQ
∴△AQE≌△BQD(AAS),
∴QE=QD,
∵BF⊥CP,
∴FQ是斜边DE上的中线,
∴QE=QF.
【图】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式