已知数列{bn}=n(n+1),求数列{bn的前n项和Sn

 我来答
华源网络
2022-08-25 · TA获得超过5598个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
bn=n(n+1)=n^2+n
Sn=b1+b2+...+bn
=(1^2+1)+(2^2+2)+...+(n^2+n)
=(1^2+2^2+...+n^2)+(1+2+...+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
注:公式:1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
证明:
给个算术的差量法求
我们知道 (m+1)^3 - m^3 = 3*m^2 + 3*m + 1,可以得到下列等式:
2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1
以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + .+ n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式