向量组a1a2a3线性相关,则向量组a1+a2,a2+a3,a3+a1线性相关
展开全部
证明:因为 (a1+a2,a2+a3,a3+a1)=(a1,a2,a3)KK =1 0 11 1 00 1 1而 |K|=2≠0,即K可逆.所以 r(a1+a2,a2+a3,a3+a1)=r[(a1,a2,a3)K]=r(a1,a2,a3).又因为a1,a2,a3线性相关,所以 r(a1+a2,a2+a3,a3+a1)=r(a1,a2,a3)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询