圆周率怎么算???
2个回答
2022-10-28
展开全部
1.算圆周率 【π】
2.计算圆的面积
这种极限观在我国古代的文献中就有记载,最著名的是《庄子·天下篇》中记载的惠施( 约前
370——约前 310) 的一段话:
“一尺之锤,日取其半,万世不竭.”
公元 3 世纪,中国数学家刘徽 ( 263 年左右) 成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的“割 圆术”.由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法.
刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边 形,然后逐渐倍增边数,依次算出内接正6 边形、正 12 边形、…、直至 6 ×2 192 边形的面积.
刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即“割之弥细,所失弥少.割之又割,以至
于不可割,则与圆和体,而无所失矣”.这就是割圆术所反映的朴素的极限思想.
2.计算圆的面积
这种极限观在我国古代的文献中就有记载,最著名的是《庄子·天下篇》中记载的惠施( 约前
370——约前 310) 的一段话:
“一尺之锤,日取其半,万世不竭.”
公元 3 世纪,中国数学家刘徽 ( 263 年左右) 成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的“割 圆术”.由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法.
刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边 形,然后逐渐倍增边数,依次算出内接正6 边形、正 12 边形、…、直至 6 ×2 192 边形的面积.
刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即“割之弥细,所失弥少.割之又割,以至
于不可割,则与圆和体,而无所失矣”.这就是割圆术所反映的朴素的极限思想.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询