椭圆的第二定义
椭圆的第二定义:平面上到定点F的距离与到定直线的距离之比为常数e的点的集合。
平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数),其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c<焦点在X轴上>或者y=±a^2/c<焦点在Y轴上>)。
参数方程
x=acosθ,y=bsinθ。
求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解
x=a×cosβ,y=b×sinβa为长轴长的一半b为短轴长的一半。
椭圆
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。
因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面垂直于圆柱体轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。椭圆在物理,天文和工程方面很常见。
2024-04-02 广告