连续函数的性质

 我来答
师说高考
2022-10-09 · TA获得超过1892个赞
知道大有可为答主
回答量:1.5万
采纳率:86%
帮助的人:276万
展开全部

有界性。

所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。

证明:利用致密性定理:有界的数列必有收敛子数列。

最值性。

所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。

介值性。

这个性质又被称作介值定理,其包含了两种特殊情况:

(1)零点定理。也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。

(2)闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。

一致连续性。闭区间上的连续函数在该区间上一致连续。

所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。

富港检测技术(东莞)有限公司_
2024-04-02 广告
楼上用定义是错误的。给你一个思路吧。显然在x=是0处连续,然后研究可导性。当你在x≠0的时候,对表达式求导可以知道,后面的cos1/x是无界量好吗?显然极限不存在的。并非无穷大cos1/x有界,取正的时,趋近正无穷,取负时,趋近负无穷,取0... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式