三角函数公式推导
1个回答
展开全部
三角函数公式推导如下:
三角函数万能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
(4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形)
2三角函数万能公式推导过程
由余弦定理:a^2+b^2-c^2-2abcosC=0
正弦定理:a/sinA=b/sinB=c/sinC=2R
得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0
转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0
即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0
又cos(C)=-cos(A+B)=sinAsinB-cosAcosB
得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0
(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询